IC202B and C, New Siderophores with Immunosuppressive Activity

Produced by Streptoalloteichus sp. 1454-19

MASATOMI IIJIMA, TETSUYA SOMENO, MASAAKI ISHIZUKA*, RYUICHI SAWA,[†] HIROSHI NAGANAWA[†] and TOMIO TAKEUCHI

Institute for Chemotherapy, M.C.R.F., 18-24 Aza-motono, Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan [†] Institute of Microbial Chemistry, M.C.R.F., 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan

(Received for publication June 2, 1999)

IC202B (1) and C (2) were isolated from the culture filtrate of *Streptoalloteichus* sp. 1454-19. The structures were elucidated by various NMR spectral analyses including ¹H-¹⁵N HMBC and FAB-MS experiments. IC202B and C showed immunosuppressive activity on a mixed lymphocyte culture reaction at the same IC₅₀ value of $1.6 \mu g/ml$.

In the course of our screening program for low molecular weight immunosuppressive compounds, IC202A, a new ferrioxamine related compound containing a butylidene *N*-oxide, has been isolated from the culture filtrate of *Streptoalloteichus* sp. 1454-19^{1,2)}. Further screening resulted in the isolation of two novel compounds, IC202B and C, which showed more potent activity than IC202A on a mixed lymphocyte culture reaction (MLCR). In this paper, we report the isolation, physico-chemical properties, structure elucidation and biological activities of IC202B and C.

Materials and Methods

Microorganism and Fermentation

The producing strain 1454-19 was isolated from a soil sample collected at Karuizawa-cho, Nagano prefecture, Japan. The taxonomic studies of producing strain and the fermentation procedure were reported in the previous paper¹.

General

MPs were determined on a Yanagimoto micro melting point apparatus. UV spectra were recorded on a Hitachi 228A spectrometer. IR spectra were recorded on a Horiba fourier transfer infrared spectrometer FT-200. ¹H, ¹³C and ¹⁵N NMR spectra were measured with a JEOL JNM-A500 spectrometer in DMSO- d_6 solution. ¹⁵N-chemical shifts were given in ppm using CH₃NO₂/CDCl₃ (1:1) solution at 379.6 ppm as an external standard. ¹H and ¹³C chemical shifts were given in ppm using TMS as an internal standard. FAB-MS spectra were measured on a JEOL JMS-SX102 spectrometer.

Mixed Lymphocyte Culture Reaction (MLCR) and Lymphocyte Blastogenesis

MLCR and lymphocyte blastogenesis were carried out according to the method described previously³⁾.

Results and Discussion

Production and Isolation

The production of IC202B and C was carried out by the method described for IC202A¹⁾. The culture filtrate (5 liters) was adjusted to pH 8.0 with 4% NaHCO₃ and was applied to a Diaion HP-20 column (500 ml). After washing with H₂O, the active substance was eluted with 50% MeOH and concentrated *in vacuo*. The crude material was dissolved in H₂O and applied to a CM Sephadex C-25 column (80 ml). The column was washed with H₂O (400 ml) and the fractions containing IC202B and C were eluted with 0.05 M NaCl. The active fractions were applied to a HP-20 column and eluted with 50% MeOH and concentrated *in vacuo*. Further purification was carried out

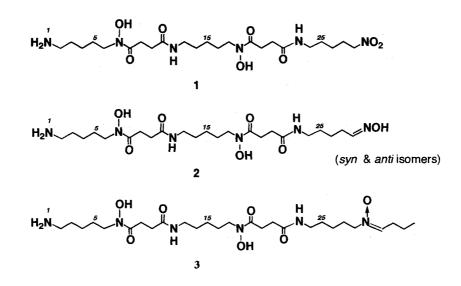


Fig. 1. Structures of IC202B (1), C (2) and A (3) isolated from Streptoalloteichus sp. 1454-19.

Table 1. Physico-chemical properties of IC202B and C.

		IC202B (1)	IC202C (2)
Appearance		pale yellow powder	white powder
MP		117-119°C	140-141°C
Molecular formula		$C_{23}H_{44}N_6O_8$	$C_{23}H_{44}N_6O_7$
HRFAB-MS (m/z)	Calcd:	533.3299	517.3350
(M +H)⁺	Found:	533.3306	517.3316
UV λ_{max} nm		No maximum above 210	No maximum above 210
		300 (sh)	
$IR v_{max} (KBr) cm^{-1}$		3310,3000,2930,2860,	3310,3000,2930,2860,
		1620,1565,1560,1460,	1620,1565,1460, 1430,
		1430,1400,730	1400,730
TLC (Rf value) ^a		0.47 ^b	0.41

^a Crystalite cellulose TLC (Funakoshi, FC-2020):BuOH-BuOAc-MeOH-H₂O (2:2:1:1) ^b Detected with I₂ vapor

by the HPLC (YMC-Pak ODS-SH, 20×300 mm; 4 ml/ minute) using 35% MeOH containing 0.05 M ammonium acetate as a mobile phase. The fractions eluted at 50 minutes were collected and desalted by HP-20 chromatography and lyophilized to give a pale yellow powder (2 mg) of IC202B. The fractions eluted at 30 minutes were collected, and IC202C was obtained as a white powder (10 mg) by the same procedures.

Physico-chemical Properties

The physico-chemical properties of IC202B (1) and C (2) are summarized in Table 1. 1 and 2 are soluble in H_2O , DMSO, and MeOH, slightly soluble in EtOH, but insoluble in CHCl₃. 1 and 2 showed almost the same IR spectra, and the strong absorption at 1620 cm^{-1} and 1565 cm^{-1} suggested the presence of amide group. 1 and 2 showed positive response to iodine vapor and FeCl₃ reagent on a

cellulose TLC suggesting the presence of hydroxamate moiety. The molecular formulae of **1** and **2** were established to be $C_{23}H_{44}N_6O_8$ and $C_{23}H_{44}N_6O_7$, respectively, by HRFAB-MS spectra and ¹³C NMR spectral information. These findings suggested that **1** and **2** are closely related compounds of IC202A (**3**).

Structure of IC202B (1)

The ¹³C NMR spectrum of 1 in DMSO- d_6 showed 23

carbon signals, which were classified into nineteen methylene carbons and four carbonyl carbons by the analysis of DEPT spectra.

In the ¹H-NMR spectrum of **1** in DMSO- d_6 , two NH protons were observed at $\delta_{\rm H}$ 7.80 and $\delta_{\rm H}$ 7.82. These protons correlated with two carbonyl carbons ($\delta_{\rm C}$ 171.3 and $\delta_{\rm C}$ 171.4) in the HMBC spectrum resulting in the presence of two amide moieties. Consequently, the presence of two hydroxamate moieties [-CO-N(OH)-] were indicated as the remaining carbonyl carbons ($\delta_{\rm C}$ 171.9 and $\delta_{\rm C}$ 172.0)

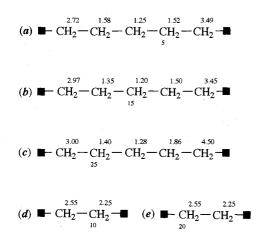
Table 2.	^{1}H , ^{13}C and	¹³ N NMR data	of IC202B	(1) and C	$C(2)$ in DMSO- d_6 .	

		1			2	
position	¹³ C	ιΗ	¹⁵ N	¹³ C	¹ H	¹⁵ N
1-N			35.0			26.0
2	38.4 i	2.72 (t,7.	4)	39.5 t	2.60 (m)	
3	26.8 t	1.58 (m)		28.9 t	1.45 (m)	
4	22.9 t	1.25 (m)		23.0 t	1.25 (m)	
5	25.7 t	1.52 (m)		25.8 t	1.50 (m)	
6	46.8 t	3.49 (t,7.	.0)	46.9 t	3.45 (m)	
7-N			175.5			172.0
8	171.9 s ^a	-		171.9 s	-	
9	27.6 t	2.55 (m)		27.6 t	2.55 (m)	
10	30.0 t	2.25 (m)		30.0 t	2.55 (m)	
11	171.3 s ^b	-		171.4 s	-	
12-N		7.80 (br t	t) 11 7 .5		7.80 (br	t) 114.0
13	38.7 t	2.97 (m)		38.4 t	3.00 (m)	
14	28.8 t	1.35 (m)		28.8 t	1.35 (m)	
15	23.5 t	1.20 (m)		23.5 t	1.20 (m)	
16	26.0 t	1.50 (m)		26.0 t	1.60 (m)	
17	47 .1 t	3.45 (t,7	.0)	47.1 t	3.45 (m)	
18-N			175.5			172.0
19	172.0 s ^a	-		171.9 s	-	
20	27.6 t	2.55 (m)		27.6 t	2.55 (m)	
21	30.0 t	2.25 (m)		30.0 t	2.25 (m)	
22	171.4 s ^b	-		171.4 s	-	
23-N		7.82 (br	t) 117.0		7.80 (br	t) 114.0
24	38.0 t	3.00 (m)		38.2 t	3.00 (m)	•
25	28.4 t	1.40 (m)		28.6 t	1.40 (m)	ł
26	23.0 t	1.28 (m)		23.6 t	1.35 (m)	1
27	26.3 t	1.86 (m)		24.3 t ^e	2.20 (m)	c
				28.7 t ^d	2.07 (m)	d
28	75.4 t	4.50 (t,7	.0)	150.2 d ^e	6.60 (t,5	5.4) °
				149.4 d ^d	7.25 (t,5	5.8) ^d
29-N			391.0			365.0°
						360.0 ^d

^{a,b}Chemical shifts with the same superscript may be transported.

°anti isomer

^dsyn isomer


based on the ¹³C and ¹⁵N chemical shifts (Table 2). The molecular formula suggested the presence of one nitrogen and two oxygen atoms as the remaining part.

Partial structures $(a \sim e)$ shown in Fig. 2 were elucidated by the interpretation of ¹H-¹H COSY spectra and 1D-HOHAHA experiments. Two sets of overlapping peaks due to (d) -CH₂(9)-CH₂(10)- and (e) -CH₂(20)-CH₂(21)were ascribed to the presence of two isolated -CH₂-CH₂based on the integration of two multiplet protons at $\delta_{\rm H}$ 2.55 (4H) and $\delta_{\rm H}$ 2.25 (4H).

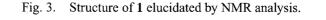
Moreover, six methylenes (C-2, C-6, C-13, C-17, C-24, and C-28) were suggested to connect with nitrogen atoms based on the 1 H and 13 C chemical shifts.

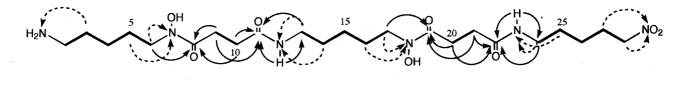
The connectivity representing C-9 to C-13 and C-20 to C-24 were elucidated by the HMBC experiments, which revealed the long range couplings from amide protons NH-12 and NH-23 to relevant carbonyl carbons C-11 ($\delta_{\rm C}$ 171.3)

Fig. 2. Partial structures and chemical shifts ($\delta_{\rm H}$) in DMSO- d_6 of IC202B (1).

and C-22 ($\delta_{\rm C}$ 171.4), respectively. Additionally, the long range couplings were observed from H-9, H-10, H-13 to C-11, and from H-20, H-21, H-24 to C-22, respectively.

Two another carbonyl carbons (C-8 and C-19), which did not show any correlation with amide proton signals in the HMBC spectrum, revealed the long range couplings from H-6, H-9, H-10, and from H-17, H-20, H-21, respectively. Taking the molecular formula of 1 into consideration, two hydroxy groups must be attached to these N-7 and N-18 positions resulting in the hydroxamate moieties. Further structural elucidation around the amide linkages were performed by ¹H-¹⁵N HMBC experiments.


As shown in Fig. 3, cross peaks were observed between methylene protons of H-3 ($\delta_{\rm H}$ 1.58) and nitrogen at $\delta_{\rm N}$ 35.0 (dotted arrow). This ¹⁵N chemical shift was appropriate for a NH₂ nitrogen. Cross peaks were observed from H-5 ($\delta_{\rm H}$ 1.52) and H-6 ($\delta_{\rm H}$ 3.49) to $\delta_{\rm N}$ 175.5, which was appropriate for a hydroxamate nitrogen.


Correlations were also observed from H-16 and H-17 to N-18 ($\delta_{\rm N}$ 175.5) due to another hydroxamate nitrogen. In addition, correlations were observed from relevant methylene protons (H-13, 14) to N-12 ($\delta_{\rm N}$ 117.0) and H-24, H-25 to N-23 ($\delta_{\rm N}$ 117.5), respectively. These ¹⁵N chemical shifts were appropriate for amide nitrogens. Finally, methylene protons (H-27, H-28) correlated to the NO₂ nitrogen at $\delta_{\rm N}$ 390.0.

The structure of IC202B (1) thus obtained was further confirmed by a FAB-B/E linked scan spectrum, which revealed the characteristic fragment peaks as shown in Fig. 4. The prominent fragment ions at m/z 201, 319 and 401 were very characteristic for these compounds⁴⁾.

Structure of IC202C (2)

The molecular formula of IC202C (2) was elucidated as

THE JOURNAL OF ANTIBIOTICS

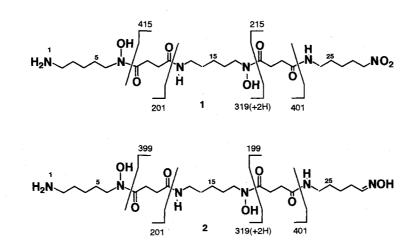


Fig. 4. FAB-B/E linked scan analysis of IC202B (1) and C (2).

Table 3. Inhibitory effect of IC202B, C and A on MLCR and mitogen induced lymphocyte blastogenesis.

	IC ₅₀ (μg/ml)			
	MLCR	Lymphocyte blastogenesis		
		ConA	LPS	
IC202B	1.6	2.5	4.4	
IC202C	1.6	2.9	4.6	
IC202A	3.6	9.6	11.3	

 $C_{23}H_{44}N_6O_7$ from HRFAB-MS, which lacked one oxygen atom from **1**. In the ¹³C NMR spectrum of **2**, however, the total carbon number seemed to be more than that by HRFAB-MS spectral information. This discrepancy may be ascribed to the presence of two isomers based on the physico-chemical properties showing the same TLC and HPLC behaviors and molecular formula. Thus, we attempted to separate them. However, all attempts were unsuccessful. As a consequence, two sets of signals were predicted. Fortunately, however, the concomitant signals were limited and the most part of signals could be easily assignable.

The ¹³C NMR spectrum of **2** was almost the same as that of **1** except for signals due to C-26 to C-28. The sp^2 methine carbons at C-28 (δ_C 149.4 and 150.2) for **2** were observed in place of the corresponding methylene carbon (δ_C 75.4) for **1**. In addition, methylene carbons at C-27 (δ_C 24.3 and 28.7) for **2** were shifted as compared with that for **1** ($\delta_{\rm C}$ 26.3). These findings suggested the presence of -CH₂-CH=N- group in **2** instead of -CH₂-CH₂-NO₂ in **1**. Moreover, the ¹⁵N chemical shift of N-29 ($\delta_{\rm N}$ 360.0 and 365.0) indicated the presence of aldoxime moiety (-CH=N-OH). From the results of ¹H-¹³C and ¹H-¹⁵N HMBC experiments, all assignments due to the isomeric aldoximes are shown in Table 2. The ratio of *syn* and *anti* isomers was almost 1:1 on the basis of the ¹H NMR integration ($\delta_{\rm H}$ 7.25 and $\delta_{\rm H}$ 6.60). Thus, the structure of **2** was concluded as shown in Fig. 1. A FAB-B/E linked scan spectral analysis (Fig. 4) also supported the conclusion.

Biological Activities

The immunosuppressive activity of IC202B and C was evaluated by MLCR and mitogen induced lymphocyte blastogenesis. As shown in Table 3, IC202B and C showed more suppressive activity than IC202A on MLCR and lymphocyte blastogenesis. In the previous paper¹, we demonstrated that IC202A was remarkably reduced the immunosuppressive activity by the addition of FeCl₃ (100 μ M). Then, we assessed the reduction of immunosuppressive activity of IC202B and C at $25 \,\mu \text{g/ml}$ by the addition (100 μ M) of other metal salts (Fe³⁺, Fe²⁺, Zn²⁺, Mg²⁺, Ca²⁺, Mn²⁺). Among them, only FeCl₃ abrogated the suppressive effect of IC202B and C. Accordingly, the immunosuppressive activity of IC202A,B and C in vitro seemed to depend on the action of iron(Fe³⁺)-chelating as that by deferoxamine, which exibited to inhibit DNA synthesis but not RNA or protein synthesis on lymphocyte proliferation⁵⁾. Studies on the other biological activities and biosynthesis of IC202A, B and C are in progress.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science, Sports and Culture in Japan.

Reference

- IJJIMA, M.; T. SOMENO, C. IMADA, Y. OKAMI, M. ISHIZUKA & T. TAKEUCHI: IC202A, a new siderophore with immunosuppressive activity produced by *Streptoalloteichus* sp. 1454-19. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiotics 52: 20~24, 1999.
- 2) IIJIMA, M.; T. SOMENO, M. AMEMIYA, R. SAWA, H. NAGANAWA, M. ISHIZUKA & T. TAKEUCHI: IC202A, a new siderophore with immunosuppressive activity produced by *Streptoalloteichus* sp. 1454-19. II. Physico-chemical properties and structure elucidation. J. Antibiotics 52: 25~28, 1999
- ISHIZUKA, M.; T. MASUDA, S. MIZUTANI, M. OSONO, H. KUMAGAI, T. TAKEUCHI & H. UMEZAWA: Induction of antitumor resistance to mouse leukemia L1210 by spergualins. J. Antibiotics 39: 1736~1743, 1986
- 4) FEISTNER, G. F.; D. C. STAHL & A. H. GABRIK: Proferrioxamine siderophores of *Erwinia Amylovora*. A capillary liquid chromatographic/electrospray tandem mass spectrometric study. Org. Mass Spectrom. 28: 163~175, 1993
- BOWERN, N.; I. A. RAMSHAW, P. BADENOCH-JONES & P. C. DOHERTY: Effect of an iron-chelating agent on lymphocyte proliferation. Aust. J. Biol. Sci. 62: 743~754, 1984